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ABSTRACT

The low register in an organ generally commands the space and

air supply required. A number of classical and novel measures to

economize with these are compared in terms of efficiency in

sound level generation and a sideglance at musical usefulness.

The comparison includes the source mechanisms of flue, beating

and free reeds, pipe and cavity resonators. Designs are presented

where a flue pipe is detuned by one semitone by an additional

capacitance at its flow node.

1. INTRODUCTION

The acoustic power delivered by a monopole source is

proportional to the squares of its frequency F and flow U.

Assuming for reasoning that the sound power delivered from

each pipe in a rank should be same this means that pipe flow will

have to be inversely proportional to frequency, and at a given

efficiency also the supply flow S. We may represent this with a

proportionality f ≈ 2-n/12, where n is semitone number on a scale

of rising frequency, e.g. like the MIDI note numbers. A simple

verbal interpretation of this may be: the lowest octave in a rank

will use approximately the same supply flow as all its higher

octaves combined. E.g. a compass of five octaves will use air in

the ratios 16 : 8 : 4 : 2 : 1.

The same applies to the lengths of the pipe resonators, while

their cross dimensions vary according to mensuration practice.

Using a ‘halving number’ M (the number of semitones you go

along the tonal scale to reach a pipe with half the diameter,

typically M=18), the pipe cross dimensions vary as 2-n/M. For the

total volume of pipes we then have V ≈ 2-n/12-2n/M. Then simi-

larly: the spatial volume of the lowest octave in a rank will

exceed the remaining octaves by 4 times using M = 18, or 3

times with M = 24. This underlines the volume occupied by the

bass pipes is a prime factor in the space economy.

Sparse piping is common in small secular organs, you omit

several notes in the bass register, mostly sharp ones. This may be

regarded as an illegal circumvention of the problem. Contrarily

however, sparse pipes may be equipped with special devices,

‘detuners’, to enable one pipe to play more than one note, thus

enabling a chromatic compass, but with restrictions on possible

simultaneous notes.

An obvious means toward small volume is to select short pipe

types. Counting length alone, minimum comes for a Helmholtz

type cavity enhancing only the fundamental. For flue pipes you

may use quarter wavelength stoppered ones rather than half

wavelength open ones. A consequence is then that the harmonic

spectrum is reduced to contain essentially only the odd

harmonics. An efficient practice is to play the fundamental with

such a pipe in combination with a one octave higher open flue

pipe. The latter then fills in the missing odd harmonics of the

lower pipe.

The same trick applies to cylindrical quarter wavelength reed

pipes (clarinet type), although it is more common to use a

conical resonator, about 0.35 wavelengths, resonating near all

low harmonics of the exciter. Reed pipes offer a wide range for

the voicer in terms of power and timbre, but in the bass the

necessary boot volume is not negligible.

2. EFFICIENCY MEASUREMENTS

Basic timbral properties are given by the pipe type, but we focus

here on a series of measurements to illustrate the efficiency of

the pipes, in the physical meaning of acoustic power delivered,

as fraction of the blowing power supplied. A disparate set of

wooden pipes were measured at varied conditions. Some of these

samples are of regular design, borrowed from an organ, others

are experimental ones where flue thickness and cut up can be

easily varied. Some cases use a reed excited Helmholtz resonator

where the cavity is variable by different length frames, clamped

together, and brackets for a continuously adjustable port area.

The objects are enumerated in Tab. 1 and measured data and

some following results pertaining to efficiency are graphically

shown in Fig 1. Each measurement included:

- P0, blowing (foot, boot) pressure in Pa.

- U0, blowing airflow in liter/sec.

- F, fundamental frequency in Hz.

- La, sound pressure level in dB (unweighted) at 25 cm distance

from the pipe opening(s).

 - Pe, effective sound pressure in kPa at the pressure maximum

for the fundamental, inside the resonator. In most cases this

pressure waveform is nearly sinusoidal, exceptions are beating

reed pipes (pulses) and the narrow flue pipe (square wave with

some highpass droop).

- Q0, low level quality factor for the resonator, from resonance

bandwidth and external excitation. This was of less interest as is

was found to be always moderately to much higher than the Q in

operation.

The flue width D (nominal airband thickness) was grossly

measured with feeler gauges, but a more reproducible effective

value was obtained from the Bernoulli equation as D = (U0 / W)

(2 P0/ρ)-½, knowing the cut up width W. All flues are wedge

shaped with about 10 degrees convergence angle, with sharp

termination edges and no nicks.
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Figure 1: Top: Some dimensional data and measurements for the pipe samples. Bottom: Computed cumulative percentage of input

power developed in radiated sound Wrd, resonator loss Wtb, and the excitation mechanism Wex. Wrd corresponds to efficiency η and is

split into a left bar for the result found from external sound, and a right from internal sound pressure.

Sample # Type Resonator dim. (mm) Frequency Comments

1 Flue, open, roll 855*51*51, H26, D0.85 196 Principal

3-5 Flue, open, bridge 820*27*27, H11, D0.7 196 Cello

7-17 Flue, open 892*55*55 175 Experimental, H and D varied

19-33 Flue, open 845*70*70, H31, 175 Regular, D varied

35-38 Flue, stoppered 825*70*70, H31, D0.73 93 Regular. Same body as #19

40-42 Flue, open, roll 1752*65*65, H30, D0.8 98 Principal

45 Beating reed Conical 1430*80*80 98 Trombone, tongue 65*12*0.7 mm

47 Beating reed 983*49*49 92 Clarinet, tongue #45

49-51 Beating reed 1745*65*65 49 Clarinet, tongue 130*17*1.5 mm

53-61 Beating reed Cavity 10/21/46 liter 49 Helmholtz res., port area tuned.

64-73 Free reed Cavity 10/21/46 liter 49 Helmh. res., tongue 130*10*1.5 mm

75-76 Free reed Conical 1430*80*80, 49 Trombone. Body #45, tongue #64

78-79 Half free reed 1745*65*65 49 Clarinet. Body #49, tongue #64

80-81 Free reed 1745*65*65 49 Clarinet. Body #49, tongue #64

Table 1: Measurement sample numbers of Fig. 1 and some further characteristics.

The acoustic output power from the pipes can be estimated two

ways from these data. An obvious one is to multiply the external

intensity (in W/m2, derived from La) by the area of a 25 cm

radius sphere around the pipe opening(s). However the sound

level varied somewhat with direction, even at the small distance

used, which indicates that standing waves in the room interfered

to partly disvalidate the measurement. –  An alternative way is to

use the resonator internal pressure. This pressure applied to the

cavity compliance results in a volume flow, essentially all of

which passes the pipe opening(s) and  exerts the output power in

the radiation resistance. When we neglect the fraction of this

flow consumed in internal loss mechanisms like viscosity and

wall heating, then for a cavity resonator of volume V these

operations amount to the power

W = ω4 Pe
2 V2 / (4 π ρc5 ).  (1)

A complication rises from the ω4 factor which means a 12

dB/oct slope when converting internal pressure into delivered

power.  Experimentally, this could be implemented as a double

differentiation of the Pe signal. This was not done in the present

study where in most cases the Pe signal was essentially

sinusoidal. In a few cases (conical reed horn and very narrow

‘cello’ pipe) this was not true, causing a fairly big under-

estimation of their power, as apparent from Fig. 2, which
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compares the output power estimations for all samples, obtained

with these two methods.

Figure 2: Efficiency estimated from internal pressure vs. that

from external SPL.

The second method suggests a speculative extended inter-

pretation, modeling the resonator as in Fig. 3. Assuming a

reasonable Q and neglecting detail refinements, at resonance we

can dismiss the reactive elements to have only a resistive divider.

This device has Ra for the useful sound radiation in parallel with

Rt for resonator losses. From resonator volume V and ω we can

compute Ra as the parallel equivalent to the radiation

resistance(s) for the opening(s) of the resonator.

Figure 3: A resonator modeled as a single RMC parallel circuit,

with resonance angular frequency ω=(MC)-½ and quality factor

Q=R/(ωM)=ωC/R, where R is the parallel combination of

exciter, turbulence and acoustic components.

The resonator is fed through a symbolic resistor Rx. This

represents the exciter, but is only a computational vehicle that is

not simply related to the pipe physical dimensions. With a

constriction like a reed, part of it can however be interpreted:

Differentiating the Bernoulli equation with respect to U, we find

a differential resistance

Rx = dP/dU = ρU/A2 = 2P/U, (2)

simply twice the ‘DC flow resistance’.

Loosely conjecturing a driving signal P0, fed trough the ‘pressure

divider’ Rx and R, we can now also compute a dissipated power

in Rt. From P and U we may additionally estimate an effective

average open area A through the reed. It must be noted that the

power in all three resistors is still far below the supplied blowing

power,  remarkably almost constantly around 10% of it, whether

flue or reed samples. Of the oscillating energy a small and highly

variant fraction goes into Ra to produce useful sound while the

rest is lost by turbulence etc. in Rt. We might call the remaining

90% an exciter loss, partly in Rx, partly unexplained other input

losses. With flues one may see them as converters from static

into kinetic energy, inside the resonator converted back and

manifested in Pe.

2.1 Flue pipes

For flue pipes the present samples give little tangible hints to any

specific dimensional relations connecting to efficiency, notably

not even the low level Q, non-trivial correlations are small. An

outstanding exception is however the intonation number, defined

by Ising [1] as

I = V*(D/H3)½ / F, (3)

where V is the initial speed of the air jet, estimable from foot

pressure P0, D its thickness, H is cut up height, and F is

frequency. Optimal for the flue drive mechanism is said to occur

at I near 2, which appears supported by fig 4. ‘Higher’ voicing

(higher V, P, D, lower H) normally causes overblowing when

I>3, here prevented with bridges, extremely so with the very

slim pipe #3-5. This renders very prominent higher harmonics,

but a weak fundamental. For efficiency in the fundamental, not

surprising, normal mensuration appears as broadly optimal.

Significantly narrower pipes, or special devices like bridges or

freins may still keep up loudness by virtue of the higher

harmonics.

Figure 4: Flue pipe efficiency (external sound) vs. Ising

intonation number.

2.2 Reed pipes

With beating reed pipes the length and thickness of the tongue

are essentially dictated by pitch, pressure, and tongue material,

[2]. Remaining parameters, available to control power level and

timbre are tongue width and the area of the shallot opening

which can be made considerably smaller than the tongue to

increase Rx. With a large Rx the resonator will operate at a high

Q but with a low pressure and efficiency, and weak harmonics.

When instead Rx is small, then the resonator is heavily damped,

higher harmonics from the reed are much transmitted and would

render a brutal timbre, and air consumption would be high. -

Shallot leathering is an additional option to soften timbre.

Free reeds like in an harmonium are ultimate to conserve space,

prominently because they keep pitch without any resonator.

Their main drawback is very low efficiency, slow tonal onset,
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and that the fundamental is weak relative to the second

harmonic. The low sound level can be appreciably incremented

using resonators. Since their waveform is two slightly grouped

pulses per period tuning the resonator to the second harmonic is

particularly effective (samples #72-3). #78-79 tested a shallot

with a deep fitting trough rather than a thin plate, blocking the

flow during half the cycle, but was a failure in improving the

fundamental.

3. VOLUME CONSERVATION

There is a continuum of possible resonator designs from a cavity

with an opening area A, varying the neck length L from a small

value up to a quarter wavelength pipe of same cross section, see

Fig. 5. For a given resonance, as L is increased the required

volume V decreases, estimable from the Helmholtz resonance

formula.

Figure 5: Relative interior (squares) and circumscribed (circles)

resonator volume, varying neck length L at constant frequency

and  mouth area A.

The total volume of cavity and neck is however smallest at the

extreme where L is a quarter wavelength. For volume conser-

vation at given sound and supply level this indicates a pipe

resonator is always preferred over a Helmholtz resonator. A

Helmholtz can be smaller than a pipe only when its opening A is

appreciably less than the pipe area, and this means a correspon-

dingly smaller power handling capacity. An historical circum-

vention is a ‘Wick’s cube’, one common volume shared by a set

of different length ports connected with individual pallets,

operable up to almost half an octave.

3.1 Pipe detuners

A conventional work around with sparse piping is to augment

some pipes with tone holes, the same principle as used in

orchestral woodwinds, such that you can raise them by one

semitone.

One dual method proposed here is to connect an additional

closed cavity at the flow node. This will instead detune the pipe

lower. To lower a pipe one semitone corresponds to making it

about 6% longer, so the required extra volume is estimated to be

this fraction times the pipe area. Fig. 6 shows a practical imple-

mentation. The merit of this method is that the ‘tone hole’ and its

operating mechanism are comparatively small, there is little flow

but high pressure at this node. However, the additional device

forms a cavity resonator where it is imperative its resonance is

higher than the pipe fundamental. Otherwise the pipe interior

will not feel it as a compliance and pipe function will be severely

disturbed, in the first place by overblowing.

Figure 6: Cavity detuner at a flow node.

A variant method is to use a tube, closed with a valve at one end.

The open end impedance of this has a first (resistive) minimum

at resonance where the tube is a quarter wavelength. Just below

that resonance it is capacitive, with a greater compliance than for

the tube volume alone. So placing its open end at the flow node

of a regular pipe will detune it lower. Since this detuner tube is

shorter than a quarter pipe wavelength, when the valve is opened

the detuner tube will have no action (other than a slight

damping) and the pipe returns to its normal pitch.

Figure 7: Narrow tube detuner and measured effect.

The graph of Fig. 7 shows measured results. The horizontal axis

is how many cents ∆H above the basic pipe frequency the

auxiliary tube is tuned. The vertical axis ∆P shows how many

cents the pipe fundamental lowered as consequence. The target

of lowering by one semitone is shown with the dotted line and

measured points are indicated with circles. The trajectories can

not be extended toward smaller ∆H. When the detuner resonance

becomes too close to the pipe pitch, it will destroy the pressure

maximum and the pipe will overblow (cf. action of the middle

hole in a harmonic pipe).
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