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Abstract  

The production mechanisms of musical sounds and of speech have many common features. 
Obvious parallels to speech is found among the wind instruments, but the same basic laws 
apply to most other musical instruments, perhaps most prominently so when the filter is 
described as a wave equation in space and time. Then the difference between instruments 
becomes largely one of boundary conditions. Some design features of wind instruments are 
illustrated in the light of perturbation theory and the relations between pitch and spectrum are 
discussed.  

Source and filter  

To describe and model a sound production mechanism it is convenient to view it as a system 
divided into source and filter. The source is some device that provides energy to the system. 
The physical filter is a bounded medium like the interior of a tube, a string, or a plate in where 
this energy propagates and reverberates. Part of this filter energy radiates away and this is 
modelled by some radiation impedance that represents the conversion into resulting output 
outside sound.  

Here we use two convenient general concepts, impedance and transfer function. Impedance 
means the ratio between force and velocity in a mechanical case, pressure and flow in an 
acoustical, or voltage and current in an electrical. The acoustical radiation impedance for 
instance gives a measure on how much sound power you get from a specified amount of flow. 
The source and radiation impedances that terminate the filter ports determine how the filter 
energy is transmitted or reflected, they form boundary conditions and are important 
components to determine the transfer function. This function is the comprehensive result that 
shows how the ratio of output to input varies with frequency, the spectral shaping.  

In voiced speech the source is at the vocal folds where the periodic sequence of air puffs 
constitute the acoustic source input signal. This goes into the oral cavity  which fulfills the 
filter function. The cavity is an acoustic line with the distinctive property that its cross 
sectional area is variable in space and time by use of the articulators, mainly the tongue, jaw 
and lips. The filter output is the mouth opening where the signal meets the radiation 
impedance. Part of the signal is there reflected back into the filter line while the other part is 
radiated. In the brass and reed woodwinds the layout is very much alike, except the 
articulatory temporal adjustment of the filtering line is in terms of length rather than area.  

In all these cases the acoustic tube is essentially closed at the source end (the transmission line 
is open circuit in impedance terms) since the source impedance is high, and open at the other 
end, the radiation impedance is low. This differs from the flutes and labial organ pipes where 
also the source impedance is low, so that the filter tube is effectively open at both ends.  

The source-filter concept is equally well suited for other musical instruments. In the 
percussion the source signal is the impulse from a hammer blow. The filter can have a simple 
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one-dimensional line structure like a string or a bar, or a more complex multi-dimensional one 
like a membrane or plate. In the string instruments the source signal may come from a 
plectrum, hammer or a bow. Here also the filter can be seen as two cascaded parts, the string 
and the soundboard. Often however the string characteristics are well known to the extent 
they are included as part of the source.  

The wave equation   

Propagation of sound in all media is gouverned by the wave equation pioneered by Jean 
Lerond d'Alembert in the mid 18th century. For one dimension x, like in a line, and a wave 
quantity Φ it is   
 
δ2Φ/δt2 = c2 * δ2Φ/δx2  

Its prominently useful feature is two basic facts: that its general solution is two waves that 
travel in opposite directions, and that it gives a measure on the propagation speed c of those 
waves. This is mostly constant and is found from the ratio of a stiffness measure to mass or 
density. For a gas of pressure p, density p and adiabatic constant γ we have c2 = γp/ρ. For 
liquid and solid media γp is replaced by the bulk modulus B, or, in case the wave goes along a 
thin bar you have to use Young's modulus E. The same comes again for the wave speed in a 
string tensioned with a force F and having the mass M per unit length c2 = F/M, and even 
again for a taut membrane, now with tension F per unit length and mass M per unit area.  

Except this it is very frustrating to try to use the wave equation because it is the same for any 
field quantity you care to insert: pressure, velocity, velocity potential, displacement, density, 
temperature, or whatever. Also it may appear hard to grasp since the function Φ is arbitrary. 
But this is only the mathematical way to say that a wave may convey any kind of signal.  

In passing we can note that if we elect to observe a single frequency, so that time differen-
tiation can be represented by multiplication by jω, then the wave equation can be written in 
the form  

-k2Φ = c2 * δ2Φ/δx2  

called the Helmholtz equation, here also using the wave number k = ω/c. But still you get 
nothing to solve from it until you specify something more, namely some boundary conditions. 
The conventional simple thing is to prescribe that the two waves for instance cancel (or 
alternatively be equal) simultaneously at two different places. Not until then you get anything 
more tangible, now you can at least find a number of values of Φ that satisfy. These are called 
the resonance frequencies or the eigenfrequencies. Their manifestation as peaks in the signal 
spectrum is often called formants. 

The filter resonances  

Applying the Helmholtz equation to a uniform line, terminated at its ends you get particularly 
simple results since the solution is just two trave lling sinusoidal waves. The sum of these you 
have all seen many times as illustrations to standing waves. Depending on if the two boundary 
terminations are the same or if they are dual you get two different sets of resonances. If the 
terminations are the same, for instance both short circuit as in the open organ pipe and the 
traverse flute, or both open circuit as with a string, then all resonances are integer multiples of 
the fundamental having one half wavelength within the line. The other archetype comes with 
one end open circuit and the other short circuit. This case is associated with the speech vocal 
tract, the brass instruments and the reed woodwinds. With a uniform tube the fundamental 
resonance then has a quarter wavelength in the line and the higher resonance frequencies are 
odd multiples of the fundamental.  



A general observation is that the wave speed and the length of the line determines an average 
frequency spacing between the resonances, ∆fav = c/2L. For speech this average is about 1 
kHz contrasting to the long brass instruments where they are close enough even to subdivide a 
low register octave.  

In open acoustical lines another characteristic is that with high frequencies the resonances 
tend to disappear. This is because the radiation impedance rises with frequency up to the point 
where the wavelength approximates the tube circumference. From then on the radiation load 
essentially matches the line impedance so there is little reflection back into the line. 

The cylindrical clarinet uses the fundamental quarter wave resonance for its main register, and 
the high overblown register is located at the next resonance, one octave and a fifth, that is 
three times higher frequency. To fill the chromatic scale between those the tube is perforated 
at many places so that it can be effectively shortened. Such an opening short circuits the 
propagating wave and will effectively disconnect the downstream part of the tube. You need 
some 18 steps on this journey with grip holes basically covering 2/3 of the length of the 
instrument. To make it possible for a performer with only two hands to manage this Boehm 
invented his famous mechanism with numerous link operated cover pads.  

When we come to the more complicated situation of a tube with area varying along its length 
the classical approach is to use an additional term in the wave equation which then is called 
the horn equation. This was developed by several workers in the 19th century but became 
widely known only in 1919 when treated by Webster. A primary interest at that time was to 
find out how to make loudspeaker horns. The horn equation can be used analytically on some 
simple shapes like the conical and exponential, but dealing with more general shapes this 
becomes too difficult and you have to tackle it numerically. Another approach is the one Fant 
(1960) took in the 1950s to handle the vocal tract transmission. He set up models with a few 
cascaded line segments. Each segment was a straight tube that could be analytically treated as 
well as the few impedance mismatches at the joints.  

A continuation in spirit of the computer age is to subdivide the line into a large number of 
small uniform segments of equal length but differing areas. This offers a possibility to 
simulate the line by two sequences of delay units, one for forward waves and one for 
backward, and where the delay time step corresponds to the wave travel time through one 
segment. Between the steps you insert scatterers, elements to take care of the transmission and 
reflection of the partial waves in accordance to the impedance mismatch at each joint. 

I will not go inside the related very extensive modem theories and methods for numerical 
signal processing. I will just mention that there exist simple conversions from the exemplified 
bidirectional line into a canonical digtal filter and the other way round. The filter model can 
also be inverted. Then it can be used as a research tool to inverse filter a natural signal, that is, 
take away the signal features imposed by the production filter, and retrieve the source signal. 
In the seventies Markel, Gray (1976) and others developed the theory of linear prediction 
along these principles such that you can compute filter coefficients from samples of the sound 
wave. This field is still maturing and expanding, nowadays under the name of system 
estimation. 

The bending waves in plates and shells are difficult to treat because the stiffness measure to 
determine wave speed not only depends on the material, but also on its thickness and, even 
worse, on the wavelength. Thus the waves have dispersion, speed depends of frequency. The 
associated wave equation has a higher order spatially, and the solutions for cases simple 
enough to be analytically treated hold Bessel functions rather than the simple circular sines 
and cosines. An immediate consequence is that the resonance frequencies are never harmonic 
unless you make them such by control of thickness and shape.  



Transient and continuous  

It is important to recognize that the resonance frequencies are are the ones at which the 
system oscillates after it is excited, but then left to itself, that is when there is no further 
source signal. From the viewpoint of source time duration it is now pertinent to divide the 
musical instruments into transient and continuous. Typical trans ient sources are with plucked 
and beaten strings like the guitar, the piano and the percussion instruments, while the bowed 
strings and the wind instruments, including the voice, have a continuous source.  

In the transient instruments the prime source property is its magnitude and the width of its 
spectrum which is determined by the hardness of the hammer. This tells which resonances can 
be excited at all. In some instruments you can however select the place of excitation to be at 
the nodes of one or more resonance modes, so that these modes are essentially not excited.  

Now once the filter has been excited it goes on oscillating at its resonance frequencies. The 
point is that these are defined by the filter, not the source. In the case of strings they indeed 
are harmonic except for the small deviations caused by bending stresses. It appears to be very 
general that to be musically attractive and to give clear sensations of pitch also the transient 
instruments should have a close to harmonic distribution of their resonances. The means to 
get there is to control the wave speed and impedance throughout the resonating body. The 
details on where to do what are complicated and delicate and generally constitute the deeper 
trade secrets in fabricating the instruments. Well known examples are the shaping of a horn 
bell, the variation in membrane thickness in certain drums, the tuning of metallophone bars or 
church bells by selectively cutting material away, not to speak of the magic blacksmith work 
in making a gong or a steelpan.  

In the contrasting class of instruments with a continous periodic source the harmonic structure 
is forced on the system by the source. For a stationary situation we can view each of the 
source harmonics modified by the corresponding value of the filter transfer function, just as in 
speech. Still one often wants the filter to have its resonance peaks close to the harmonics in 
order to enhance them as much as possible to produce a rich spectrum. As an example fit a 
stiff steel string to a violin. When you bow it all harmonics are strict multiples of the 
fundamental. But because of the string inharmonicity the high harmonics are out of tune with 
the string filter resonances. So they will not build up to their expected level, the resulting 
sound is effectively lowpass filtered and becomes dull.  

But for music to be musical it cannot be very stationary. So the transients that always 
accompany a change in the source will excite the filter resonances, harmonic or not. These 
transients at the onset of a note are highly characteristic of an instrument and are often 
difficult to implement satisfactorily in synthesizing its sound. Many sources also contain a 
noise component, quite conspicuous for instance in the flutes. The noise has no harmonic 
components but instead gets a direct coloring from the filter transfer function. These spectral 
peaks need not coincide with the harmonics of the periodic signal.  

In string instruments the filter between the string and the ambient air is one or several sound 
boards combined with resonator cavities. This gets complex enough to make it impossible to 
do an elementary analysis. The speed of the bending waves changes over the area of the board 
due to its varying thickness or to the presence of stiffening bars and even if the board is 
isotropic the bending wave speed also depends of frequency. The boundaries of the board do 
not have a simple shape and the boundary conditions may vary unsystematically, clamped at 
some places, free to bend at others, etc. Finally the radiation to the ambient is distributed over 
the entire board, so also the air load and the directional characteristics become very 
complicated. Characteristics like input impedance and transfer of this kind of filter is 
conveniently studied with modern tools like a dual channel Fourier analyzer. The two 
channels may then represent the source and the filter output derived from an accelerometer on 



an exciting hammer and a microphone. You can get results of this kind, here the transfer from 
a driving point of the string, that is the bridge, to ambient sound pressure. These two are quite 
like each other although the instruments differ somewhat in design and size, it is a violin and 
a piano.  

 
Fig 1.   Transfer functions from bridge to air for top a violin (Hutchins (1981)), and bottom a 
piano (Wogram (1981)). The graphs are displaced in frequency by a factor of 5 to 
approximately normalize for the difference in soundboard size.   

Area perturbation   

The standing wave pressure and flow (or force and velocity) directly link the potential and 
kinetic parts of the wave energy. In the sixties Manfred Schroeder (1967) used an arcane 
theorem by Ehrenfest to create what we know as perturbation theory. This theorem tells the 
relative change in a resonance frequency coming from a small local change in impedance. The 
sign of the frequency change is related to whether the static or kinetic energy dominates at the 
point of change. The meaning of this has the same character as these curves, usable as a guide 
when the resonances of a church bell are to be tuned in a lathe. But the instrument maker 
would rather be interested in a resolved answer, namely the perturbation theory which tells 
what kind of change in shape that is required to move one, and only one of the resonance 
frequencies.   

 
Fig. 2.  Bell tuning curves show how the first five partials change in frequency  when metal is 
removed from various inner locations on the inside surface, which appears in cross section at 
the left. (van Heuven, from Rossing (1988)).   



For the simple uniform tube case it comes out that we have to modify the area in cosinusoidal 
shape having half the wavelength of the standing acoustic wave. Let for instance the diameter 
get smaller at all pressure maxima where the potential energy dominates and larger at all 
pressure nodes where the kinetic energy dominates. Then both measures tend to raise the 
resonance frequency. This perturbation is orthogonal to all the other resonances, so these 
remain unchanged.   

Let us try to perturb a straight tube as to shift all but the fundamental resonances upwards to 
make them come at the places for a closed tube. The second resonance should be moved up 
1/3, the third 1/5, and so on. We might then guess our total area function could be a sum of 
spatial cosines, amplitudes falling correspondingly with frequency. Such a sum, using the 
wanted integer spaced frequencies, indeed does look like a trumpet when you take the square 
root to see it as diameter rather than area! By a decrease in the lowest nonzero frequency 
cosine amplitude the narrow part can come out as almost cylindrical rather than flared. This 
also matches the fact that the fundamental resonance is out of tune and left unused in the 
brasses.   

 
Fig. 3.    A trumpet-like shape as generated by a cosine series, motivated by perturbation 
theory reasoning. Top the spatial frequency spectrum, bottom the shape viewed as area and 
diameter (square root of area). 

If we instead perturb substantially to raise also the fundamental resonance it is easy to 
similarly approach the conical shape typical to the saxophone. In this and other conical 
instruments the fundamental is used and the overblown register at next resonance comes only 
one octave higher.   

The input resistance to the filter has superficially the same shape as the transfer function, only 
scaled with the radiation resistance. This is not self-evident or universal, but provided the 
internal filter losses are small it can be inferred as the driving power we expend at the filter 
input has no other way to escape than into sound radiation. For an archetype we can represent 
the impedance with pulses, located at the usable resonances along the frequency axis. They 
are some ten in number with the brasses, only a few with the woodwinds.   

Let us now Fourier transform this schematic impedance into an impulse response at the 
mouthpiece. This then represents the pressure at the mouthpiece as a function of time, 
following the input of a unit area flow impulse. The remarkable consequence of our moving 
the resonances into contiguous integer multiples is that the reflected pulse now arrives in 



phase after travelling once fore and back in the tube. The reshaping of the uniform tube into a 
trumpet has made the input look as if also the remote end is closed what regards nonzero 
frequencies. This also explains why the instrument is not appreciably detuned when you insert 
a mute into the bell:  the end wall of the mute is located approximately at this virtual closure. 
Hence the resonance frequency of the mute itself as a Helmholtz resonator is not important to 
the tuning, indeed this resonance normally falls right in the middle of the operating frequency 
range. A main function of the mute is to reduce the mouth radiating area which decreases the 
low frequency radiation appreciably.   

So far we have looked only at one-dimensional waves. This is not very accurate when a horn 
flares significantly and the wavefront becomes curved. To cope with this using analytical 
mathematics tends to get rather complicated, one might remember heroic work by Benade and 
Jansson (1974) in the seventies to bring the theory forward for brass instruments.   

For a general case in more than one dimension we will have to resort to numerical methods. 
The space can for instance be subdivided into a number of finite   

 
Fig 4.    Idealized input impedances and their corresponding impulse responses. Top for a 
cylindrical tube, closed at one end. Middle for a trumpet-like tube where the second and 
higher resonances have been shifted to be at integer multiple frequencies. Bottom impulse 
response for a trombone as measured by Elliot and Bowsher (1982).   

elements, each with simple differential expressions defining the relations between time, place, 
pressure and flow. The whole space is subsequently brought together and mapped by the 
simultaneous solution of a massive equation system involving all the elements. The finite 
element method emerged in structural mechanics and is directly applicable to the complex 



movements and tensions in soundboards. For the somewhat easier problem of acoustical 
radiation in a homogeneous space the boundary element method is now emerging an 
attractive alternative. Then we need not subdivide the space since nothing very special 
happens there except the mere radiation transport. We can limit ourselves to the bounding 
surfaces, which is very beneficial to the volume of computation, and the interior field can be 
fairly straight forward inferred from what goes on at the boundaries.   

Sources in speech and music   

The vocal fold speech source is powered by an almost steady lung pressure. By delicate 
muscular control of tension and adduction of the folds they can be made to vibrate. This 
comes as consequence of various aerodynamic phenomena at the narrow glottal passage. The 
movement of the folds and the driving mechanism is sufficiently complex and interesting to 
breed a research area of its own. This picture from my current work in glottal aerodynamics 
(Liljencrants (1989)) shows an example of the air velocity distribution in two-dimensional 
space around the vocal folds in a simple model. Both in speech and wind instruments the 
driving pressures inserted are so high that the corresponding kinetic air velocities are in the 
range well over 10 m/s. One consequence of this is that when the flow passes a significant 
constriction you almost always get flow separation from the wall, the flow forms a jet. Mostly 
also the Reynolds numbers are high enough that there comes instability and turbulence 
downstream the jet, you see it here as it is developing into a vortex street. Such instability 
makes some noise and is important in the labial pipe as an initial seed to start oscillation.   

The brass wind instruments are the ones most closely like the speech apparatus. The vocal 
folds have their counterpart in the player's vibrating lips. These have a less sophisticated 
anatomical structure which calls for exercise to make them vibrate properly. Common to the 
vocal folds and the oscillating lips is that they are comparatively weakly influenced by the 
sound pressure in the following filter since the downstream sides of their vibrating members 
work against it only at small areas. A major part of the forces rather come from the 
aerodynamics inside the passage, but these in turn do depend on the acoustic pressure which 
is a component in the total pressure drop across the passage.   

 
Fig. 5.  Simulation of two-dimensional flow between the vocal folds and the following false 
folds, a layout similar to the one in a brass instrument mouthpiece. Pressure is shown by the 
gray level and flow as particles with velocity vectors. It is seen how the air jet develops 
instability.   

The reed source is to some extent similar, but an important difference is that the entire inner 
surface of the reed is exposed to the acoustic pressure in the tube. This makes the source flow 
very strongly influenced by this pressure and it becomes easy to view the reed mechanism as 



a negative resistance. An increase in acoustic pressure tends to open the reed slit and allow an 
increased flow in direction against that pressure.   

In the labial instruments like the flutes and organ pipes the source flow is also very much 
controlled by the filter. Here a thin band of air is blown across the aperture by the power 
supply and is split by the labium edge. This band has essentially no compliance and mass to 
oppose the resonant pressure or flow in the filter. But when there is a flow into the filter 
across the jet this will deflect the jet toward the inside, and the flow is thus incremented with 
the jet flow. This is in turn converted into pressure as the jet slows down inside the tube and 
part of its kinetic energy is converted into potential. It can then be regarded as a negative 
admittance;  a flow into the filter is accompanied by an amplifying pressure change. As 
compared to our earlier source examples this one has a very low impedance level, when 
connected to a tube the tube practically remains open ended when we regard it as a resonator.   

Pitch to formants relation   

A prominent difference between spoken voice and the musical instruments is the pitch in 
relation to the filter resonance frequencies. The low pitch in speech makes the densely spaced 
harmonics more or less completely fill the envelope of the transfer function and there is no 
special frequency relation between the pitch and the resonances. Crudely neglecting prosody, 
the information is conveyed by the movements of the formant resonances. The pitch and 
harmonics just serve as a carrier to fill the spectrum to make all formants audible. A time 
domain correspondence is that the pitch period is long compared to the sound travel time 
through the resonator. Indeed the vocal tract may be viewed as a transient instrument. It is 
primarily excited at the closure of the vocal folds after which the sound reverberates several 
times in the mouth cavity. When the vocal folds open for the next cycle the reverberation is 
heavily damped until the next excitation. This is similar to the alternate action of hammer and 
damper when you play a rapid series of notes on the piano. It also has a similar function, 
namely to suppress excessive reverberation that would have smeared out the sound timewise 
to conceal the 'message'.   

Now interaction between source and filter comes to issue, in a first place since the source-
filter concept assumes time- invariant linear conditions. Still the concept is useful, but we will 
have to introduce unorthodox connections to represent that some signals control element 
values or other signals in the system. A simple way to cope is to let certain elements vary 
slowly according to some smoothed function of the signal state. An example may be to 
assume incremented formant bandwidths in proportion to some average loss in the glottal 
passage. A more complicated way is to let the control go directly without smoothing. For 
instance to model that both the frequency and bandwidths of the formant oscillations change 
dynamically with the momentary value, of the glottal impedance. Then the model becomes 
nonlinear which among other things will open the possibility for chaotic behaviour, perhaps a  
candidate to explain jitter and shimmer in the voice.   

In the instruments an important aspect of the interaction is that the filter signal to an essential 
degree controls the source pitch. In the labial pipe this is obvious since the source mechanism 
directly depends on the filter signal. In the reeds there is the strong coupling to the inner 
surface of the reed from the acoustic pressure in the tube. The lesser coupling to the heavy lip 
valves in the brasses is made up for by a correspondingly high filter impedance, that is narrow 
bore in the tube, which also corresponds to a very high internal sound level. It is illustrative to 
interchange the mouthpieces of a clarinet and a trumpet. With the trumpet mouthpiece on the 
low impedance clarinet there is little interaction, so the player can easily vary the pitch with 
his lips independent of the fingering and tuning of the filter, just like in speech. Oppositely, 
with the clarinet mouthpiece on a trumpet the pitch is securely locked to the fundamental 



'pedal' note and it is hard to get any other unless you open a water valve to damp out this 
resonance.   

Thus in the instruments the pitch coincides with a resonance, usually one of the lower, and the 
higher resonances are left to color the harmonics of the pitch. One could twist this into that 
the roles of pitch and spectrum are interchanged, the pitch conveys the information and the 
spectrum becomes a prosodic element. The singing voice is a bridging phenomenon. To make 
the first formant frequency coincide with pitch is much used to render a high output sound 
level, but because of the weak coupling this is not automatic, instead it is one of the singer's 
acquired skills.   

References   

Benade, A. H., Jansson, E. (1974): On plane and spherical waves in horns with non-uniform 
flare. Acustica 31, pp. 79-98.   

Elliot, S. J., Bowsher, J. (1982): Input and transfer response of brass wind instruments. JASA 
72-6, pp. 1447-1460.   

Fant, G. (I960): Acoustic theory of speech production. Mouton, S'Gravenage. 2nd ed. 1970. 

Hutchins, C. M. (1981): The acoustics of violin plates. Sci. Am. 245-4 (Oct.), pp. 126-135.   

Liljencrants, J., Fant, G. (1975): Computer program for VT-resonance calculations. STL 
QPSR 4/1975, pp. 15-21.   

Liljencrants, J. (1989): Numeric simulation of glottal flow. Proc. Congr. of Vocal Fold 
Physiology. Stockholm.   

Markel, J. D., Gray, A. H. (1976): Linear prediction of speech. Springer.   

Rossing, T. D. (1984): Acoustics of bells. American Scientist, 11, pp 440-47, reprinted in 
Rossing (1988).   

Rossing, T. D., editor (1988): Musical acoustics. Am. Assoc. of Physics Teachers.   

Schroeder, M. R. (1967): Determination of the geometry of the human vocal tract by acoustic 
measurements. JASA 41, pp. 1002-1010.   

Wogram, K. (1981): Acoustical research on pianos. Das Musikinstrument 24, reprinted in 
Rossing (1988).   


