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0. Introduction

The speech signal is normally picked up as an analog electrical representation of the

acoustic sound pressure as sensed by a microphone which can be analyzed, amplified,

transmitted, or recorded using whatever kind of device is appropriate. Historically all

processing like filtering, coding, analysis, and synthesis was done with analog devices,

theoretically conceived and operating with continuous quantities like time, voltage,

frequency, etc. In consequence of the technical evolution most processing today is more

conveniently done with digital computing, in appliances for various purposes by special

signal processors, in the laboratory often with personal or larger computers. This has

allowed for an ever growing system complexity that could never realistically be

implemented with analog systems. Also modern work often adopts signal processing

tools and methods in higher level modelling such that the concept of a signal is wider

than perhaps suggested by its naive original meaning. It is for instance commonplace to

regard system parameters like formant frequencies as just another set of signals.

Digital signal processing (DSP) has expanded tremendously as a field of its own during

the last few decades with important contributions from several diverse research

disciplines, particularly those of speech and communications, statistics, and seismology

not to mention mathematics. There is an abundant handbook literature on DSP, more

often than not going into great mathematical detail, but the use of it is sometimes

complicated by variant, but largely synonymous terminology and conventions that

reflect the field background of the authors. This chapter gives a cursory presentation of

some frequently used DSP concepts and applications that should be familiar to all

speech workers. Formulas and examples of flow diagrams are shown for a few standard

basic procedures, the main purpose being to assist the reader to identify them as such in

the literature on theoretical developments and applications. The approach is directed

into the domain of discrete signals rather than into the historic roots within classical

continuous theory.

1. The discrete Fourier transform

A signal can be completely quantified in either of the two domains of time and of

frequency. The classical invention of Fourier was to consider a signal to be constructed

from a number of sinusoidally shaped components. For a periodic signal, one that

repeats a pattern with a period T0, he showed that it can be represented by a

fundamental of frequency 1/T0 and a number of harmonics, all multiples of this
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frequency. The amplitudes and phases of these components constitute the amplitude and

phase spectrum of the signal. This spectrum is discrete, it has spectral lines at the

frequency intervals ∆f = 1/T0, but nothing between them. The spectrum is a prescription

of how much to take of each frequency component in order to synthesize the time signal.

Let us assume our signal has no extreme temporal fine structure, such that the spectrum

has a limited number of harmonics. One of these frequency components has the index

number k, it represents the frequency k⋅∆f = k/T0 and may be denoted with a complex

number Xk. The use of such a number is no more than a practical convention and an

expedient to keep formulas simple. It can be expanded alternate equivalent ways, for

instance in terms of real and imaginary parts Ak and Bk, or magnitude |Xk| and phase φk

which for purposes like graphic plotting may be more appealing.

Xk = Ak + j Bk = |Xk| e jφk

The formula to construct a sequence of N time samples xn for one period is called the

Inverse Discrete Fourier Transform, IDFT:
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This compact mathematical notation should not hide the fact that there is a considerable

quantity of computation involved; the formula is to be computed N times, once for every

time sample xn. And every such sample is built up as the sum of contributions from N

different Xk. The second factor in each summed term is the sinusoidally shaped

elementary function which can likewise be expanded as

e j(2π/N) kn = sin((2π/N) kn) + j cos((2π/N) kn) (2)

For a transform to be interesting it is of course required that it is invertible, we must be

able to analyze a signal x to compute this prescription Xk. This amounts to solve Xk from

a given set of xn in the system (1) of N equations, and this mere procedure explains why

we use N time samples xn. The result is
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in this notation known as the Discrete Fourier Transform, DFT. That the direct and

inverse transforms are so similar is because the elementary shapes are orthogonal, that

is, if you sum the product of two harmonics over the range N, then the result is zero

unless the harmonics are of the same frequency.

The DFT exhibits a number of symmetries that come inherently from the sine and

cosine shapes. A most important one is that if the time signal xn is real (no imaginary

part, as with all physical signals), then the spectrum is symmetrical such that Xk = X*-k,

that is, the real part of the spectrum as well as its magnitude have even symmetry,

Re{Xk} = Re{X-k}, and the imaginary part and the phase have odd symmetry, Im{Xk} = 

−Im{X-k}. In the same manner as the sequence Xk of frequency samples represent the

spectrum of a periodic signal now the sequence xn of time samples have a periodic

spectrum, and we need to use only one of these spectrum periods; all the other are called

aliases. In computing it is general practise to use positive subscripts only, so the

convention is to use X0 to XN-1 and with the symmetry point at XN/2. The symmetry point
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should properly have been at zero frequency, but this is no problem in the discrete world

since X-k = XN-k in the next alias, identically.

Fig 1 shows a number of prototype examples of DFT time-frequency representation

pairs. In a and b the time sequence is a unit impulse, xn is zero for all n except at one

place in each, at n = 0 and 3 respectively, and N = 64. The sequences are plotted in a 3D

coordinate system of real and imaginary components vs. time or frequency indices

respectively. This way you can also see the result in the form of magnitude and phase,

displayed as lengths and inclinations of the thin lines extending from the frequency axis.

When the pulse advances in time we observe that the magnitude of the DFT is

constantly the same unit value, but the phase increases more rapidly with frequency, an
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Fig 1. Prototype examples of three-dimensional time and frequency

representations linked by the discrete Fourier transform. The

signal real and imaginary compinents are shown horizontally and

vertically, while the time and frequency axes extend away. a: a

unit impulse with a white spectrum, b: delayed impulse gives

phase increasing with frequency, c: even pulse pair gives real

spectrum, d: odd pulse pair gives imaginary spectrum. The two

domains can be interchanged when allowing for a scale factor.
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example of the delay theorem. When the impulse advances one step, then the total

frequency sequence will contain exactly one more revolution in phase. The ends of the

sequence always meet. A programmer must be aware there is no X64 in fig 1. That

sample would be number 0 in the next alias, identical to X0.

Further illustration of some symmetries is given in fig 1c. Adding an equal pulse in

number 64-3=61 makes the time series even (and still real), and the transform is even

and real. The transform is the sum of two spirals like in b, equal in magnitude and pitch,

but opposite in direction of phase rotation. Similarly making an odd time series in d

gives an odd and imaginary transform.

In the figures 1c and d we can also for a moment switch in order to let the right hand

graph represent time and the left hand represent frequency. We then see how the

transform of a cosinusoid comes out as a pair of equal spectral lines at plus and minus

the appropriate frequency. Changing the phase of the signal to make it a sinusoid, causes

it to show up as a half revolution phase shift and an odd and real transform.

If we increase the frequency of a sinusoidal signal such that it contains one more cycle

within the N samples, then the spectral line appears at the next sample in the frequency

interval. Now, what happens is we transform a sinusoidal signal that does not have an

integer number of periods within the time interval? The spectrum should perhaps then

ideally be a line at some frequency that is not represented by any sample.

Remembering that the discrete spectrum we got represents the finite time signal

repeated periodically, then when we join successive N sample time segments having a

non-integer number of sine periods we will get a discontinuity at every joint. This will

be seen in our spectrum as strong components extending over the entire frequency

range.

The remedy is to modify the input prior to the transformation with a suitable window

that has a gradual fall off toward the ends to reduce the discontinuity. Some well known

windows and their transforms are shown in fig 2. The Hanning window is an inverted

cosine period, raised to give zero values at its ends. The Hamming window has the same

basic shape, but is raised on a small pedestal. This is optimized such that the transform

sidelobes are approximately the same level everywhere, about 43 dB below the main

lobe. For even more stringent sidelobe requirements the Blackman or Kaiser windows

can be used. Within the dynamic range shown they are similar to the truncated Gaussian

shape at bottom of the figure, and which has a special interest since a Gaussian remains

a Gaussian when transformed.

The window will impose an effective duration Te for which the spectrum analysis is

valid. This time is shorter than the total duration of the window, by a factor of 1, 2, and

3 in the cases of fig 2. In the frequency domain what would ideally have been a single

spectral line will be spread out as the shape of the window transform. The shown

examples were scaled such that the width of the main lobes in the frequency domain are

about equivalent. They illustrate the important rule of thumb that the effective resolution

bandwidth in the spectrum, the effective bandwidth of the window main lobe at its -3dB

points (approximately), is

Be = 1/Te (4)

The reason for windowing is thus to suppress artificial components that would

otherwise arise from the abrupt truncation of the time interval to NT. The cost is that the

frequency resolution is impaired. Or conversely, to keep a prescribed frequency
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resolution we must select a greater NT to accommodate a total window duration that is

some moderate factor longer than its effective duration.

The fast Fourier transform algorithm

The amount of computation to perform the transform by the definition (3) is N2 complex

multiplications and additions, an amount that may be inordinate for larger N. The Fast

Fourier Transform, FFT, is an elegant algorithm that optimizes an order in which the

partial computations are performed, the final result is exactly the same as from the

definition. FFT stands for the feature of computational speed in making the DFT, it is

not a transform in itself as is DFT. The algorithm was published by Cooley and Tukey

(1965) and since remains a prime standard tool in DSP making countless old and new

developments practically usable. The total computational effort for FFT is proportional

to (N/2)∗2log(N), where N is a power of 2, instead of N2 as would be for the definition

formula. For instance, with N=1024 the reduction of computation is about 200-fold.

Another merit of the FFT is that the accuracy of the result is improved because there are

fewer rounding errors accumulated.

Other transforms

Having entered the domains of complex numbers and with Fourier derivations still valid

it is no wide step to generalize the frequency variable from an imaginary jω to a general

complex quantity s=σ+jω, also including a real part which means the elementary

function is a sinusoid which is exponentially increasing or decreasing as eσt. The
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continuous transform using this generalized frequency goes under the name of Laplace,

and its discrete correspondent is in practice easily embraceable by the DFT.

The sinusoidal elementary building block is not the only one from which we can build

up a world of signals. In fact any shape can be used, orthogonal shapes are preferred, but

the Fourier method is standard for reasons of conceptual and mathematical simplicity as

well as arithmetic efficiency. Over the times mathematicians have devised many other

transforms, all with the same basic concept of building the time and/or the frequency

representation from variants of an elementary shape, but differing in what exactly is this

shape.

The last decade has seen a vivid activity in applying the concept of time-frequency

distributions to speech analysis as well as other disciplines. This alternate development

for the study of time-varying spectra originated as probability distributions in quantum

physics, but its mathematical formalism can be used for power estimation. The best

known of several such distributions, see for instance the review by Cohen (1989), is

perhaps the Wigner-Ville distribution, WVD. This makes use of the analytic signal

known from signal theory and which can be concisely described as the complex signal

that arises when you filter away negative frequencies from a real physical signal, but

retain the positive, an operation easily implemented by use of the DFT. Doing this

involves a ´Hilbert transformer' which is a phase shifter in the time domain. This device

is a kind of filter rather than a transform between domains, so its name can cause

confusion.

2. Analog to digital conversion

We must be able to represent continuous analog signals as sequences of discrete

numbers in order to treat them with digital devices. This process, the analog to digital

conversion, A/D or ADC, can be broken down into two stages, the sampling and the

quantization.

The sampling means that we measure a continuous signal at some specified intervals in

time, and neglect what values the signal may have between those samples. Normally

(but not necessarily) the time interval T between samples is constant such that we can

define a sampling rate fs=1/T. In discrete theory the term rate is preferred to frequency

which rather belongs in continuous theory, but in general usage they are mostly treated

as synonyms. As just outlined, when we take N time samples, in all covering the time

span T0=NT, then we also get N frequency samples, covering the frequency span

N/T0=1/T.

One point of essence is then that on our frequency axis with indices k the sampling rate

is located at k=N. Another is that the symmetry requirement permits us to have only N/2

unique frequency samples, the other N/2 must be mirror values if the spectrum is to

represent a real physical signal. This leads to one cornerstone of sampling theory: we

can correctly handle only such signals that have no frequency components above half

the sampling rate. Should there be any such higher frequency components their aliases

will superimpose on those in our permitted range below  fs/2 and cause irreparable

damage known as aliasing distortion. Therefore it is mandatory that an analog signal is

band limited to fs/2 by a pre-filter before it is sampled. The minimum sampling rate fs is

called the Nyquist rate, in some literature the term is unfortunately used for maximum

allowable signal frequency fs/2.
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The other cornerstone of the sampling theorem is that we can reconstruct the original

continuous signal exactly without loss of information, namely if we send the sampled

signal through a lowpass (ideal) filter having its cut-off frequency at fs/2. Then we will

retrieve the base spectrum alone and remove all the higher frequency aliases. The

reconstruction lowpass filter generates the missing signal shape between the samples

and implements a special way of interpolation. - Suppose the original signal indeed had

some wiggles between the sampling points that are not present in the reconstruction. In

that case it must also have had some too high frequency components for the sampling

rate actually used.

The second stage of A/D conversion is to represent the continuous range of sample

values on a numerically quantized scale with a certain number of steps, we round off the

continuous value to the nearest step. Each sample is assigned a numerical code for its

value, and the accuracy depends on how many digits we care to use for this code which

is normally binary. If we for instance use an 8 bit code, about the minimum to be

practically usable, then the code can represent 28=256 different steps on the scale.

Through this incomplete description we introduce an error with a peak value of half a

step which manifests as a pseudo random quantization noise superimposed on our

signal. It we compare the maximum representable signal amplitude (256/2) to this noise

amplitude we find a coarse approximation to the signal to noise ratio as 48 dB. A rule of

thumb says we can expect about 6 dB of signal to noise ratio for each bit in the

quantization; 10 bit quantizing would give 60 dB, and 16 bits 96 dB.

A quantizing scale with equal steps as with conventional A/D converters makes a noise

background of constant level, irrespective of signal level. In speech coding for use in

telephony 8 bit quantizers are normal, but where instead the steps on the scale are of

unequal size, small steps for small signal amplitudes, and gradually larger steps with

increasing amplitudes. There exist two slightly different international standards

recognized as A-law and µ-law. These schemes render a signal to noise ratio that is only

about 38 dB, but instead of being constant the noise background essentially follows at

this distance below the actual signal level.

The development of consumer equipment for digital sound like CD and DAT includes a

dramatic improvement of performance versus cost in ADC technology. A prime

contributor is high speed circuitry which makes it possible to sample the signal at a

much higher rate (several MHz) than needed from bandwidth considerations with the

signals actually present. This means that lowpass filters for bandlimiting and

reconstruction can be omitted at the analog side. Another is the use of so called delta-

sigma quantizers that include a filtered feedback from the discrete to the continuous side

with an effect to shape the spectrum of the quantizing noise. The total noise power is

unaffected, but is concentrated at high frequencies such that its low frequency

components are suppressed. Not until now the bandlimiting lowpass filter, implemented

as a digital filter with a performance close to ideal is introduced. The filter not only band

limits the desired signal, but also removes a major part of the quantizer noise. This

scheme is today perfected with such extreme noise suppression that precision

conversion is attained with only a 1-bit sign detector toward the analog side. Finally

most of the output samples are discarded (if ever computed), we only keep those (for

instance every 128th) necessary to make the resultant sampling rate at least twice the

band limit.
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In sound engineering 48 or 44.1 kHz sampling are standard. For speech work 20 kHz is

sufficient for most practical purposes, but lower rates like 16, 12, or 8 kHz are

commonly used, the latter for speech communications. With the lower rates part of

fricative speech sounds can of course not be registered. It should be recognized that a

high sampling rate is not automatically beneficial. An excessive frequency range will

not only increase the volume of computation but may at instances also be incompatible

with model validity.

3. Filtering

Classically a filter is considered in the frequency domain as a device by which we

modify the spectrum X(f) of a signal. The filter is then characterized by a transfer

function B(f) by which we multiply the input to obtain the output

Y(f)=X(f)•B(f). (5)
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waveforms, bottom left: block diagram, bottom right: spectra.
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A lowpass filter, for instance, has a magnitude of B(f) close to unity below its cutoff

frequency, and a small value above the cutoff. B(f) is a complex function and can be

represented with its real and imaginary parts, but mostly one prefers to show it in terms

of magnitude and phase.

A conventional analog filter is causal, it gives no response at its output at times before

any input has reached it. It is noteworthy that this restriction is in a practical sense often

somewhat relieved in digital processing. If the total system is anyway set up for a certain

delay between input and output we may access a number of 'future' input signal samples

in store, relating to times later than that for which we are currently computing the filter

output.

It is illuminating to study a filter starting from the unit impulse as a prototype input

signal. In the discrete time domain let the impulse have its unit value at sample number

zero, and be zero everywhere else. The spectrum of this impulse X(f)=1 for all

frequencies. The corresponding output (the frequency response) of the filter is then just

B(f) and we can regard this as a special kind of signal that represents the filter itself and

nothing else. If we now transform this signal into the time domain we get the filter time

response, or impulse response b(t).

This gives an opening to examine one particular class of digital filters. We start with a

known or prescribed impulse response manifest in a table of regularly spaced samples

bk. We then use these values to set up a number of multipliers in a device like in fig 4a.

Here an input pulse will travel along a chain of delay units, each with a delay equal to

the sampling interval T. The signal is tapped between the delay units, multiplied with

the appropriate bk, and forwarded via a summing unit to the output. If the input is a

single impulse, then when it travels down the delay chain it is present at only one tap at

a time and the output will take the corresponding value and thus reproduce the impulse

response in sequence. And when the input is a sequence xn of a signal the output will be

the sum of all the weighted and delayed samples. The general time domain notation for

the filter is

y b xn k n k
k

K

= −
=

∑
0

(6)

This type of filter is called a transversal filter, or commonly a FIR filter, for finite

impulse response, which emphasizes that in a practical implementation the delay chain

must have a finite length. The output being a weighted average of K+1 samples moving

along with time n lies behind the term moving average (MA) filter in statistics

terminology.

It also illustrates the kind of processing called convolution between b and x to find y. An

important aspect is that to do the same operation in the frequency domain is just the

simple multiplication of (5). And by the DFT/IDFT symmetry, multiplication in the time

domain is equivalent to convolution in the frequency domain. The windowing of a time

signal is a prominent example - the spectrum after transformation is the convolution

between the signal and window transforms.
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As a simplistic example of how to design a FIR filter from a prototype numeric filter

response specification in the frequency domain we can obtain the impulse response

sequence bk by IDFT. It is necessary however to understand exactly what we are allowed

to specify. Obviously bk must be real numbers which implies that the frequency

specification must have even symmetry from -fs/2 to +fs/2, or 0 to fs. This frequency

band is uniformly sampled at N intervals, so we can not specify any details in the

response with any better resolution than fs/N. This implies that sharp frequency filtering

requires such a large N that FIR filters sometimes are impractical for implementation in

computers or signal processors. It is also important that the bk sequence ends gracefully,

for instance by the appliction of some window function. Design methods for FIR often

become iterative for this reason, after windowing the frequency response is modified

and must then be rechecked, conveniently with a DFT of the bk.

The z transform

A central concept in DSP is the z transform. In discrete time systems this has a meaning

correspondent to the Laplace transform in continuous systems. z is defined in complex

frequency s and sample interval T by
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d: All-zero parcor filter, one example among several possible lattice filter

structures.
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z = esT= eσT⋅ ejωT    or    z-1 = e-sT (7)

This constitutes a conformal mapping of every point in the s plane onto the z plane. A

main feature is that the imaginary s axis, representing frequencies jω, is mapped on the

unit circle in the z plane, fig 5. The left half s plane, the allowed area for the poles of a

filter if it is to be stable, is mapped to the interior of the circle. Conversely the z plane is

mapped on an infinite sequence of horizontal stripes in the s plane, representing the

baseband and its aliases due to the sampling.

- 
F

re
q

u
e
n

c
y

 +Upper limit

Neg mirror

s=    +jσσσσ ωωωω ωωωω

σσσσ

Im(z)

Re(z)

z

ππππ /T

1

Fig 5. The conformal mapping of the complex frequency plane s, below half the

sampling rate, and the z plane.

By virtue of the delay theorem z-1 can be seen as a delay operator that signifies a delay

with the sampling interval time T. Each term in (6) can then be transformed as

bk xn-k => bk X z-k (8)

such that the z transform of the time series expression (6) can simply be seen as

Y(z) = X(z) b zk
k

k

K

−

=

∑
0

(9)

where thus the sum is the z domain transfer function B(z)=Y(z)/X(z).

This is an Kth order polynomial in z with the corresponding number of coefficients bk.

One of the things you can do with a polynomial is to set it to zero and solve the resulting

equation. Then you get K (generally pairwise complex conjugate) values for z, and for

each of them the transfer function is zero, they are referred to as the zeroes of the

transfer function. Each value of z is represented by equivalent s domain values in the

base band below half the sampling rate, and an infinite number of higher aliases.

In working with discrete systems it is often helpful to forget about the time domain and

instead use the lag (z-1) domain. Correspondingly the z domain is used as an, albeit

distorted, replacement for the frequency domain. When you ultimately want some result

expressed in frequency it is easy enough to compute that from z using the definition (7).

A very important trick that can be done with any kind of filter or other signal

transmitting device is to connect it in a feedback loop as in fig 4b. Doing this with our

FIR device the configuration renders a new transfer function which is simply found by

inspection as

A(z)=Y(z)/X(z) = 1/(1+B(z)) (10)
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We now instead use coefficients ai to distinguish the feedback case, and the convention

is to put a0 = 1 to settle a scale factor such that we can write

1/A(z) = 1 + a zi
i

i

I

−

=

∑
1

 (11)

We then again have an expression with a polynomial with the important distinction that

it is in the denominator of A(z). Again solving for the roots, the values of z where the

denominator polynomial is zero, we now get the poles of the new transfer function A(z).

A specific consequence of the feedback mechanism is that once a signal sample has

entered the system it will circulate through the network back to the input and generate

new output samples for all future. This lies behind the term infinite impulse response,

IIR, for this class of filters. This feedback device alone, with no zeroes in the numerator,

is also called an all-pole filter, or in statistics terminology, an AR filter, then with

reference to that its coefficients may be established by use of autoregressive methods.

Any filter can be modelled in terms of the two prototypes FIR and IIR in combination.

The general recursion formula on how to compute the output samples yn from the input

samples xn is then

y b x a yn k n k
k

K

i n i
i

I

= −−
=

−
=

∑ ∑
0 1

(12)

visualized in fig 4c. In the z domain, the filter transfer function H(z)=Y(z)/X(z) is seen

from

Y z a z X z b zi
i

i

I

k
k

k

K

( ) ( ) ( ) ( )• + = •−

=

−

=

∑ ∑1
1 0

(13)

The AR part of the filter gives I complex conjugate poles and the MA part gives K

complex conjugate zeroes. The higher of I and K define the order of this pole-zero, or

ARMA filter.

Even if we can implement any filter directly with two such polynomials there is often a

practical reason to refine the technique. Especially with higher order systems the

coefficients may need to be specified with an accuracy that can not be reached in

processors with moderate word length. This can be overcome by various manipulations

on the formulas to write them in alternative, but equivalent forms.

One way is to solve the polynomials for their roots. This may be a costly operation with

high order systems since it must then be done iteratively. Once the roots are found the

polynomial can be factored as the product of a number of first and second order

polynomials. In the implementation this corresponds to that number of such low order

filters, connected in sequence such that the output of one is input to the next. An

example is the cascade formant speech synthesizer where each formant is implemented

with a second order filter. Knowing the roots the polynomial can alternatively be

expanded into a sum of partial fractions and this corresponds to a set of parallel filters,

another speech synthesizer classic. Here all the filters are given the same input and the

total output is the sum of the filter outputs. A more recent and technically advantageous

development is the lattice filter structure to which we return below.

A sampled-data filter can be developed from well known templates in continuous

theory, like the Butterworth (maximally flat frequency response) all-pole filters, and
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elliptic filters having poles and zeroes combined to render sharp filter cutoff between

the pass and rejection frequency bands. Such descriptions in terms of poles and zeroes

do not always perform well when transposed to the z domain because of interaction with

the frequency aliases. One popular remedy is to pre-warp the frequency description with

a bilinear transformation such that infinite frequency is mapped to fs/2, that is, z=−1. In

the handbook literature there are also numerous other methods on how to design the

filter coefficients from given specifications in time or in frequency, some available as

commercial programs.

4. Spectrum analysis

Spectrum analysis has always been a fundamental tool for description and parameter

extraction in speech research. Two basic representations are predominant, the spectrum

section, fig 6, that pertains to a specified time interval and shows level versus frequency,

and the spectrogram, fig 7, with frequency versus time and the level portrayed as shade

of gray or color. The standard method of spectrography is to multiply the signal with a

time window of suitable length and shape, Fourier transform this, and finally find the

spectral level by the logarithm of the squared magnitude. To make a spectrogram this

procedure is repeated with partly overlapping windows until the desired total time is

covered. The most central issue in spectrography is to select the parameters of time

resolution and frequency resolution. From the spectrogram we can localize an event

timewise with a resolution that corresponds to the duration of the analysis window. The

frequency resolution is inversely related to this duration as defined in (4). These

resolutions define a 'logon' within which no further detail can be found. Classical

selections for speech work from the time of the Sonagraph are 'narrow band' to resolve

the voice harmonics, and 'wide band' to suppress these and instead reveal the formant

structure and the timing details. Examples in fig 7a and c show 4ms*250Hz and

20ms*50Hz.

The essence of the now fashionable time-frequency distributions is that they, contrasting

with the classical spectrogram, reveal time detail within the time span transformed. This

has a price in that signals, more composite than for instance sine sweeps, exhibit what

could be called intermodulation products or aliases, spurious peaks that make the

distribution difficult to interpret. This effect can be moderated by various schemes of

smoothing which however counteracts the purported improvement in resolution. Fig 7d

shows results from an implementation with individually controllable time and frequency

smoothing windows as suggested by Velez and Absher (1989). Here the smoothing is

selected to make the spurious components barely visible. An example with less

smoothing in fig 7e shows typical spurious patters and alias 'ghost' formants and pitch

periods. The use of time-frequency distributions is promising but not yet established in

speech. As Cohen remarks: Although it is now fashionable to say that the motivation for

this approach is to improve on the spectrogram, it is historically clear that the main

motivation was for a fundamental analysis and a clarification of the physical and

mathematical ideas needed to understand what a time-varying spectrum is.
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M=32
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M=17
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Fig 6. Spectrum sections of a vowel [e:] sampled at 16 kHz. The top three are Fourier

spectra with different bandwidths to show or suppress the pitch harmonics.

The bottom four are LP spectra of varying order. M=17 would be the more

adequate with the sampling rate used if the peaks were supposed to indicate

formants.
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Fig 7. Enlarged details of spectrograms of a transition  [le:] sampled at 16 kHz with

'logons' to indicate time and frequency resolutions.

a: conventional Fourier 'wideband' with 4ms*250Hz,

b: 17 coefficient autocorrelation LP with the same time window as a,

c: conventional Fourier 'narrowband' with 20ms*50Hz,

d: smoothed Wigner-Ville distribution with nominally 2ms*70Hz,

e: same, but 1ms*35Hz giving interlacing artifical pitch pulses and formant

track.

5. Linear prediction analysis

Prediction theory has an origin in statistics for analysis of periodic sequences of data,

like daily temperature or population birth rate. One of several interesting aspects is that

it gives a way to identify seasonal variations, or correspondingly with speech, for

instance to identify the systematic oscillations in the waveform due to the formants. This

or similar methods have been applied in many fields, in speech first by Saito and Itakura

(1966), and Atal and Schroeder (1967), and became a widespread standard tool in

speech research after the comprehensive presentation by Markel and Gray (1976).

An N:th order predictor would use N historic samples, each contributing to the

prediction by some weight factor bi, and then we use precisely the formula (6) for a FIR
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filter (excluding b0, otherwise there would not be much of a prediction). This predictor

is called linear because it uses a linear combination of the samples, but nothing like

powers or products of them. The concept of linearity is an important one that implies

that superposition is legal: assuming two different inputs to a system which would

generate two different outputs - then the sum of the inputs also generates the sum of

those outputs uniquely.

There exist several methods to arrive at the predictor coefficients, covered extensively in

the standard textbook literature. One way to formulate the problem is to arrange the

predictor in the circuit of fig 8. The signal is compared to the prediction of it, and the

resulting output difference is the prediction error.

e
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+

_

ΣΣΣΣ b  xi    n-i

y
n

ΣΣΣΣ a  yi    n-i

Predictor

Analysis model Synthesis model
Inverse filter

ResidualSignal Reconstruction

Estimator (Transmission)

Fig 8. The basic processing blocks in LP modelling. The estimator computes optimal bi

from the signal x and e. In a basic vocoder application a reconstructed

version of the signal can be fabricated using the same coefficients in an IIR

filter.

The solution amounts to finding values of the coefficients such that this error becomes

as small as possible, normally using a minimum squares criterion. Two standard

methods, known for historical rather than mathematical reasons as the covariance and

the autocorrelation methods, differ in details and in the range of samples used. We do

not enter the mathematics of them, this is well published, down to the level of source

codes for their central subroutines, for instance in Markel and Gray (1976) or in the

publication by the IEEE DSP committee (1979).

The covariance method is efficient in extracting a maximum of relevant information

from a minimal amount of data, but may give problems in accuracy and stability. The

more reliable results come with good quality input data, not corrupted by noise, and that

reflect a stationary system. Even with a static articulatory position the vocal system is

not stationary in this sense because the glottis presents a loading impedance that varies

considerably over the glottal period, not to speak of the disturbing discontinuity at

glottal closure which normally constitutes a major part of the excitation. The covariance

method is considered to perform best when the data come from the part of a voiced

speech period where the glottis is closed. An inherent property of the method is that the

solution does not necessarily represent a stable filter, the roots of the predictor

polynomial may be located outside the unit circle.
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With the autocorrelation method one normally uses a larger number of samples for the

computations, for speech typically at least 256, covering more than one pitch period. To

reduce truncation effects the signal segment is normally weighted with a window like a

Hamming window. Part of the processing, as its name suggests, is to compute

autocorrelations of the samples which also includes an averaging process which will

reduce the influence of noise. Moreover this method inherently gives a stable result.

Having found the coefficients that minimize the prediction error the configuration of fig

8 will represent an inverse filter. This removes the spectrally prominent features

(formants) in the signal and delivers a spectrally white residual at its output. The

customary practice is to regard this as the inverse to the production filter in a source-

filter production model. Whatever residual that remains of the speech wave after inverse

filtering is categorized as the source. Ideally this white spectrum residue should be a

pulse train in case of voiced speech, or random noise with unvoiced. Usually it does

exhibit prominent peaks at the instances of excitation of the vocal tract, and this in itself

makes it a much used input for pitch determination algorithms. It also serves as a

fundamental raw material for studies of the vocal source. To account for the effect from

radiation in speech production the speech signal is normally high frequency

preemphasized with a first order filter prior to LP analysis.

The impulse response of the inverse filter is an initial unit value followed by the

predictor coefficients bi. By Fourier transformation of this we obtain its frequency

response, and turning this upside down we get the estimated 'LP spectrum' of the signal.

Being a filter characteristic this lacks information on the signal level which however can

easily be found from the signal directly.

Fig 6 compares Fourier and LP spectra of different orders. It is important to recognize

that although the LP spectrum appears clean and regular as compared to the Fourier

spectrum, and more like an ideal textbook shape of a spectrum with formants, it does

not necessarily represent the speech signal in a more truthful way than the Fourier

spectrum. Rather the LP spectrum is the ideal textbook shape, it is precisely a formant

model of the signal. The number of formants that can appear is a priori decided by the

number of LP coefficients. If you make an LP analysis with M coefficients you will get

no more than M/2 formants, independent of what number of formants the signal may

really have. The merit of LP is that you can prescribe M from your knowledge or desire

of how many formants to find, and then the LP analysis will deliver the best matching

model within this restriction.

The frame fig 7b shows 17th order LP spectra in the format of a spectrogram. This

representation is rarely used for visual display but is the more common as raw material

for the estimation of formant patterns.

To get knowledge of the dimensionality from the signal alone has not been a primary

concern for classical speech research but is intensely treated in the field of system

estimation. Here speech serves as example of a most challenging application because of

its rapid variation in number and values of its system parameters. Numerous alternative

methods have been developed to find LP parameters in a sequentially adaptive manner,

and simple forms have reached enough maturity to be incorporated in mobile

telecommunications systems, like ADPCM (adaptive predictive PCM), see e.g. Jayant

and Noll (1984).

Batch or frame processing vs. such sequential processing is an often encountered

dichotomy. The Fourier and LP analyses are typical examples of the first where the
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spectrum or the LP coefficients are determined for a frame of signal samples. The data

of the whole frame is treated in one comprehensive and relatively complicated process,

and also the result is a vector, a composite set of data. The data for the next execution of

the algorithm is taken some frame step time later in the input sequence, with speech

perhaps in the range 2-50 ms depending on application. The IIR and FIR filters with

their simple recursion formulas exemplify sequential processes. Although the input is

several samples the process delivers an output for only one sample time slot, and the

process is then subsequently repeated in its entirety, each time displaced by one sample

interval. Sometimes the desired processing can be obtained either way. You can for

instance do a spectrum analysis framewise using the FFT or you can do it sequentially

with a bank of parallel bandpass filters. Which is the computationally more efficient

way can be inferred from the requirements of output temporal and spectral resolution.

The inherent efficiency of FFT can in such cases justify apparently wasteful solutions

like pooling several adjacent spectrum samples into one wider band analysis channel.

Numerous methods have been developed to bridge such gaps, for instance special

variations of the FFT with 'pruned' inputs or outputs, or the constant Q transform

(Brown, 1991). The chirp-z transform (Rabiner et al, 1969) is for evaluation away from

the frequency axis. Frequency warping can at instances be integrated within a process

like in the warped LP outlined by Strube (1980).

6. Pitch extraction techniques

The extraction of pitch is one of the perennial problems of speech research, reviewed for

instance by Hess (1983). The literature describes methods by the hundreds, constantly

reporting improvements, still an ideal method remains to be found. The reasons why a

pitch determination algorithm (PDA) may fail are manifold, but prominent ones are that

speech has a highly variable spectrum - the base for its information carrying capacity -

as well as it shows considerable variation between speakers. These problems are likely

to create difficulty when one attempts to measure or display accurate individual pitch

periods within the laboratory. In practical applications like speech coding for

communications we have the additional difficulties of band limiting, non-linear and

phase distortions due to filtering and reverberation, and external noise. The more

fundamental problem is however one of definition: what exactly is pitch? Most PDAs

work on some specific feature connected with periodicity, and perform well if this

feature is actually present. Suppose for instance a pitch meter that isolates the

fundamental with a lowpass filter in order to measure its period. This will inevitably fail

in case the fundamental has been removed by bandlimiting as in telephone speech, or in

presence of low frequency noise, even such that may not be perceived by a human

listener.

Most practical measurement algorithms, not only for pitch, can be logically partitioned

into a preprocessor, an estimator proper, and a postprocessor. The task of the

preprocessor is to condition the signal, for instance by dynamic control of spectral

preemphasis and gain, to create an optimal signal for the estimator. The postprocessor

typically identifies and corrects errors, it could for instance replace a deviant sample

with a value somehow derived from its neighboring samples. In all three subsystems the

degree of sophistication can be arbitrarily selected which in part explains the vast

number of PDAs in the literature.

The historically earlier PDAs were based on direct processing of the time signal,

typically detecting peaks (Dolansky, 1955) or zero crossings. Another popular time

domain idea is that successive pitch periods should be of approximately equal shape.
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This lies behind the autocorrelation and average magnitude difference methods (AMDF,

Ross et al, 1974). If you compare two signal segments, located some time apart, then

they should be maximally correlated (alternatively show a smallest difference) when this

time equals the pitch period. The weakness of the time methods is that successive

periods are not always very similar when articulation varies, or in the presence of

reverberation or other disturbances. Some have as special merit that they reasonably

locate some anchor point in each individual pitch period.

The other classical mainstream PDAs operate in the frequency domain and exploit the

fact that a periodical signal has a number of evenly spaced harmonics. An initial process

is then to Fourier transform the signal, and the PDA looks for the repetitive spectral

peaks. The spectrum must then have sufficient resolution to show the individual

harmonics which implies that the time interval transformed must have sufficient

duration - you cannot detect a periodicity unless you look at more than one period. One

way to detect the spectral periodicity is to compute the sum or product spectrum

(Schroeder, 1968) or computationally efficient variations like subharmonic summation

(Hermes, 1988). The principle is then that you make several versions of the spectrum

with frequency axes rescaled by factors 1, 2, 3, etc., and then combine them by summing

or multiplication. This way the harmonic peaks of a spectrum will give rise to a sharp

coincidence peak while inharmonic components average out into a low floor.

Another way to identify the periodicity in the spectrum is to take the spectrum of the

power spectrum. According to the Wiener-Kinchin theorem this amounts exactly to

finding the autocorrelation function of the signal. A successful related variant is to first

take the logarithm of the power spectrum - this makes all spectral lines have the same

shape even if their levels vary with the formant envelope. The spectrum of the log power

spectrum is called the cepstrum, with an abscissa of quefrency, the same dimension as

time. This method and its vocabulary of permuted variants of the classical terms was

conceived of in seismology by Bogert et al (1963), and was applied as a highly

successful speech PDA by Noll (1967). A principal merit of this method is that it is

largely insensitive to level variation and band limiting in the input - these only reflect as

shift and truncation in the log spectrum. Thus the cepstral peak is largely of constant

cepstral amplitude. A weakness appears when the signal has only a few harmonics (e.g.

in the occlusion phase of a voiced plosive) or when the pitch is rapidly changing. In the

latter case the higher harmonics in the log spectrum are smeared out and may overlap

such that the periodic structure disappears.

Fig 9 shows the cepstrum of a voiced sound. Its contents at quefrencies shorter than the

pitch peak (the short-pass liftered cepstrum) is a Fourier description of the grosser

features of the log spectrum like level, slope and formant density. These first few

cepstral values are often used as input data to speech recognizers. In that application it is

also customary to reshape the log spectrum on a warped frequency scale before Fourier

transformation of it into the cepstrum. This is mostly done on the basis of the Bark scale

which is applied to account for the frequency selective properties of the hearing

mechanism. The intention is to represent the perceptually relevant information with a

minimal amount of data, a prime interest both in communications applications and

research.

Modern PDAs often use the machinery of an LP inverse filter as preprocessor to remove

the formant structure from the speech wave, for instance Markel (1972), Un and Yang

(1977), Ananthapadmanabha and Yegnanarayana (1979), Cheng and O'Shaughnessy

(1989). The accuracy and robustness of modern PDAs are often sufficient for use in
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communications systems, but pitch extraction remains a dynamic field now trying to

incorporate more complete modelling of the human auditory system, see Hermes (1993).

7. Speech synthesis and coding

Knowing the inverse filter it is elementary as outlined above to set up the inverse of it,

that is the synthesis filter. Another important variation is that as part of the LP

coefficients solution we find what in different terminologies is called, reflexion, parcor

(Itakura and Saito, 1972), or k coefficients. They have correspondent filter

implementations in the form of lattice filters (Makhoul 1978, Friedlander 1982) which

can be set up in a variety of equivalent forms by use of mathematical transformations

and such tricks as introducing backward prediction. These are similar to reflexion line

filters, or wave filters (Fettweis and Meerkötter 1975, Strube 1982) and relate back to

classical vocal tract modelling as a set of abutting transmission line sections of varying

areas. From k one can thus construct such an area function that would give rise to the

observed filtering. Yet another form is the logarithm of the area ratios, LAR, which have

been found to be effective and robust descriptors in speech coding for communications.

The possibility to estimate vocal tract area functions reliably is however limited. It

depends critically on proper handling of such side factors as preemphasis and that

assumptions of the model (for instance that of one-dimensional wave propagation) are

valid in the frequency band defined via the sampling rate.

An early application of LP was in vocoders where the transmitted data were the

coefficients, the pitch and the level. These exhibited a 'reedy' and somewhat unnatural

character in the resynthesized voice, much due to the use of a simple pulse generator for

synthesis excitation. For high quality vocoding different schemes have been developed

to transmit the residual in more detail, ranging from simple low-rate PCM over more

complicated representations with sets of multiple unequal pulses each pitch period, up to

schemes using vector quantization, so called code-book excited vocoders, CELP.

Vector quantization is an important topic in itself, also with several other applications

for speech. See Makhoul et al (1985) or Gersho and Gray (1992). Assume that we have

collected, from some learning material, a large number of vectors, that is ordered sets of

numbers. They may for instance represent pitch period residuals, spectrum shapes, area
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Fig 9. High resolution cepstrum of the same vowel [e:] as in figs 6 and 7.
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functions, or sets of formant frequencies. A purpose of vector quantization is to extract

the essentials of such a large amount of empirical data and classify it. The vectors are

compared to each other with some pertinent distance measure and they are grouped into

classes, generally much fewer classes in number than the vectors. The members of each

class are then sufficiently close in value that they can be averaged into a single

representative entry in a codebook. Later, using the codebook, we have as input one

vector and its closest correspondent is searched for. The quantity subsequently recorded

or transmitted is not the composite vector itself, but only its ordinal number in the

codebook. To hint the order of magnitude involved, a codebook to represent with

reasonable fidelity the various spectral patterns used by a population of speakers might

contain some 1000 vectors.
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